On Non-separable Families of Positive Homothetic Convex Bodies
نویسندگان
چکیده
A finite family B of balls with respect to an arbitrary norm inRd (d ≥ 2) is called a non-separable family if there is no hyperplane disjoint from ⋃ B that strictly separates some elements of B from all the other elements of B in Rd . In this paper we prove that if B is a non-separable family of balls of radii r1, r2, . . . , rn (n ≥ 2) with respect to an arbitrary norm in Rd (d ≥ 2), then B can be covered by a ball of radius ∑n i=1 ri . This was conjectured by Erdős for the Euclidean norm and was proved for that case by Goodman and Goodman (Am Math Mon 52:494–498, 1945). On the other hand, in the same paper Goodman and Goodman conjectured that their theorem extends to arbitrary non-separable finite families of positive homothetic convex bodies in Rd , d ≥ 2. Besides giving a counterexample to their conjecture, we prove that conjecture under various additional conditions.
منابع مشابه
Survey Paper Combinatorial problems on the illumination of convex bodies
This is a review of various problems and results on the illumination of convex bodies in the spirit of combinatorial geometry. The topics under review are: history of the Gohberg–Markus–Hadwiger problem on the minimum number of exterior sources illuminating a convex body, including the discussion of its equivalent forms like the minimum number of homothetic copies covering the body; generalizat...
متن کاملConvex sets with homothetic projections
Nonempty sets X1 and X2 in the Euclidean space R n are called homothetic provided X1 = z+λX2 for a suitable point z ∈ R n and a scalar λ 6= 0, not necessarily positive. Extending results of Süss and Hadwiger (proved by them for the case of convex bodies and positive λ), we show that compact (respectively, closed) convex sets K1 and K2 in R n are homothetic provided for any given integer m, 2 ≤ ...
متن کاملNakajima’s Problem: Convex Bodies of Constant Width and Constant Brightness
For a convex body K ⊂ Rn, the kth projection function of K assigns to any k-dimensional linear subspace of Rn the k-volume of the orthogonal projection of K to that subspace. Let K and K0 be convex bodies in Rn, and let K0 be centrally symmetric and satisfy a weak regularity and curvature condition (which includes all K0 with ∂K0 of class C2 with positive radii of curvature). Assume that K and ...
متن کاملOn the Total Perimeter of Homothetic Convex Bodies in a Convex Container
For two planar convex bodies, C and D, consider a packing S of n positive homothets of C contained in D. We estimate the total perimeter of the bodies in S, denoted per(S), in terms of per(D) and n. When all homothets of C touch the boundary of the container D, we show that either per(S) = O(log n) or per(S) = O(1), depending on how C and D “fit together”. Apart from the constant factors, these...
متن کاملNakajima’s Problem for General Convex Bodies
For a convex body K ⊂ Rn, the kth projection function of K assigns to any k-dimensional linear subspace of Rn the k-volume of the orthogonal projection of K to that subspace. Let K and K0 be convex bodies in Rn, let K0 be centrally symmetric and satisfy a weak regularity assumption. Let i, j ∈ N be such that 1 ≤ i < j ≤ n − 2 with (i, j) 6= (1, n−2). Assume that K and K0 have proportional ith p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 56 شماره
صفحات -
تاریخ انتشار 2016